13556 measured reflections

 $R_{\rm int} = 0.037$

4314 independent reflections

2478 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(4-Hydroxyphenyl)-7-(phenylsulfonyl)-4H-chromen-4-one

You Peng,^{a,b} Ze-Yuan Deng,^a* Shao-Jie Lang^b and Dong-Mei Xiong^a

^aState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China, and ^bDepartment of Chemistry and Engineering, Jiujiang University, Jiujiang 332005, People's Republic of China Correspondence e-mail: dengzeyuanpaper@126.com

Received 7 November 2007; accepted 11 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.145; data-to-parameter ratio = 17.1.

The title compound, $C_{21}H_{14}O_6S$, is a new daidzein derivative with potential medical applications. The hydroxyphenyl ring makes a dihedral angle of 51.31 (8) $^{\circ}$ with the benzopyranone ring. The crystal structure is stabilized by intermolecular O- $H \cdots O$ and $C - H \cdots O$ hydrogen bonds.

Related literature

For general background, see: Tlkkanen et al. (1998); Sarhyyamoonhy & Wang (1997). For related structures, see: Wang & Zhang (2005); Zhang, Wang, He & Yu (2005); Zhang, Wang, Wang & Wu (2005).

Experimental

Crystal data $C_{21}H_{14}O_6S$ $M_r = 394.37$ Monoclinic, $P2_1/n$ a = 6.1408 (3) Åb = 13.0272 (7) Å c = 22.7381 (12) Å $\beta = 91.891 \ (1)^{\circ}$

 $V = 1818.00 (16) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 293 (2) K $0.35 \times 0.26 \times 0.14 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.868, T_{\max} = 0.970$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	253 parameters
$wR(F^2) = 0.145$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
4314 reflections	$\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D6 - H6A \cdots O5^{i}$ $C7 - H7A \cdots O1^{ii}$ $C12 - H12A \cdots O1^{iii}$ $C14 - H14A \cdots O4^{ii}$	0.82 0.93 0.93 0.93	1.91 2.59 2.45 2.47	2.716 (2) 3.216 (5) 3.139 (5) 3.345 (5)	170 125 131 156
$C17 - H17A \cdots O2^{W}$	0.93	2.52	3.234 (5)	134

Symmetry codes: (i) $-x - \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, -y, -z + 2; (iii) x - 1, y, z; (iv) -x, -v + 1, -z + 2

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors acknowledge support from the Opening Foundation of the State Key Laboratory of Food Science and Technology in Nanchang University, China (No. NCU200508), the Program for Changjiang Scholars and Innovative Research Team of the Ministry of Education of China (No. IRTO540) and the Graduate Student Innovative Foundation in Jiangxi Province, China (No. YC07A027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2361).

References

- Bruker (1998). SAINT (Version 4.00), SMART (Version 5.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sarhyyamoonhy, N. & Wang, T. Y. (1997). Eur. J. Cancer, 14, 2384-2389.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tlkkanen, M. J., Wahala, K., Ojala, S., Vihtna, V. & Adletcteutr, H. (1998). Proc. Natl Acad. Sci. USA, 95, 3106-3110.
- Wang, Q.-Y. & Zhang, Z.-T. (2005). Acta Cryst. C61, m215-m217.
- Zhang, Z.-T., Wang, Q.-Y., He, Y. & Yu, K.-B. (2005). J. Chem. Crystallogr. 35, 89-94.
- Zhang, Z.-T., Wang, X.-B., Wang, Q.-Y. & Wu, L.-N. (2005). J. Chem. Crystallogr. 35, 923-929.

supplementary materials

Acta Cryst. (2007). E63, o4787 [doi:10.1107/S1600536807057844]

3-(4-Hydroxyphenyl)-7-(phenylsulfonyl)-4*H*-chromen-4-one

Y. Peng, Z.-Y. Deng, S.-J. Lang and D.-M. Xiong

Comment

Daidzein and its derivatives have obtained much attention for their potential antidysrhythmic, antioxidant, effective in getting rid of hyperkinesias (Tlkkanen, 1998) and in inhibiting cancer cells growth (Sarhyyamoonhy & Wang, 1997). The title compound is a novel daidzein derivative with potential medical applications, its crystal structure is reported here.

The title compound is composed with a benzopyranone, a benzensulfonate and a hydroxyl group (Figure 1). The atoms of benzopyranone moiety (C7—C15, O4) is almost coplanar with a mean deviation 0.028 Å form the least square plane. To avoid steric conflicts, hydroxyphenyl ring (C1—C6) and benzopyranone moiety are twisted by 51.31 (8)°. The crystal structure is stabilized by intermolecular O—H…O and C—H…O hydrogen bonds (Table 1 and Figure 2).

Experimental

A solution of daidzein (101 mg, 0.4 mmol) and t-BuONa (10 mg) in dry CH_2Cl_2 (15 ml) is stirred at -20 °C for 2.5 h under Ar atmosphere. Then the benzene sulfonic acid chloride (68 mg, 0.48 mmol) in CH_2Cl_2 (2 ml) is instilled in 20 minutes and the reacts for a further 0.5 h. Pouring into ice water followed by extraction with ether/ethyl acetate (1/2), washing with aqueous solution of NaHCO₃, drying and removal of solvent under reduced pressure give the crude product. Purification by flash chromatography (silica, $CHCl_3/(CH_3)_2CO$, 10/1, V/V) yields the title compound (Yield: 80%). Single crystals were grown by slow evaporation from a $CH_2Cl_2/(CH_3)_2CO$ (1:1 v/v) solution.

Refinement

All H atoms were positioned geometrically with O—H = 0.82 and C—H = 0.93 Å and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. Perspective structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The packing of (I), view down the *a* axis.

3-(4-Hydroxyphenyl)-7-(phenylsulfonyl)-4H-chromen-4-one

Crystal data	
$C_{21}H_{14}O_6S$	$F_{000} = 816$
$M_r = 394.37$	$D_{\rm x} = 1.441 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 268-270 K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.1408 (3) Å	$\theta = 2.7 - 24.2^{\circ}$
<i>b</i> = 13.0272 (7) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 22.7381 (12) Å	T = 293 (2) K
$\beta = 91.891 \ (1)^{\circ}$	Block, yellow
$V = 1818.00 (16) \text{ Å}^3$	$0.35 \times 0.26 \times 0.14 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	4314 independent reflections
Radiation source: fine-focus sealed tube	2478 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 293(2) K	$\theta_{\text{max}} = 28.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 8$
$T_{\min} = 0.868, \ T_{\max} = 0.970$	$k = -17 \rightarrow 17$
13556 measured reflections	$l = -30 \rightarrow 30$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_o^2) + (0.0558P)^2 + 0.1514P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.002$
4314 reflections	$\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$
253 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.0869 (4)	-0.33515 (15)	0.72589 (9)	0.0568 (5)
C2	0.2690 (4)	-0.27307 (17)	0.73315 (10)	0.0663 (6)
H2B	0.3878	-0.2821	0.7093	0.080*
C3	0.2735 (4)	-0.19784 (16)	0.77581 (9)	0.0609 (5)
H3A	0.3967	-0.1568	0.7806	0.073*
C4	0.0992 (3)	-0.18196 (14)	0.81162 (8)	0.0505 (5)
C5	-0.0829 (4)	-0.24414 (15)	0.80349 (9)	0.0576 (5)
H5A	-0.2026	-0.2345	0.8269	0.069*
C6	-0.0885 (4)	-0.32037 (15)	0.76103 (9)	0.0585 (5)
H6B	-0.2113	-0.3617	0.7562	0.070*
C7	0.2899 (4)	-0.09870 (16)	0.89349 (10)	0.0662 (6)
H7A	0.3915	-0.1509	0.8892	0.079*
C8	0.1129 (3)	-0.10184 (14)	0.85800 (8)	0.0516 (5)
С9	-0.0542 (4)	-0.02307 (15)	0.86390 (8)	0.0540 (5)
C10	-0.0039 (4)	0.05562 (15)	0.90851 (8)	0.0549 (5)
C11	-0.1410 (4)	0.13926 (17)	0.91859 (11)	0.0706 (6)
H11A	-0.2717	0.1451	0.8970	0.085*
C12	-0.0862 (4)	0.21275 (19)	0.95980 (10)	0.0751 (7)
H12A	-0.1767	0.2689	0.9654	0.090*
C13	0.1040 (4)	0.20204 (16)	0.99268 (9)	0.0639 (6)
C14	0.2446 (4)	0.12272 (16)	0.98480 (9)	0.0680 (6)
H14A	0.3737	0.1171	1.0071	0.082*
C15	0.1870 (4)	0.05051 (15)	0.94200 (9)	0.0587 (5)
C16	0.3035 (4)	0.43441 (15)	1.08865 (9)	0.0612 (6)
C17	0.1139 (5)	0.48937 (19)	1.09136 (11)	0.0829 (8)
H17A	0.0034	0.4812	1.0628	0.099*
C18	0.0902 (6)	0.5571 (2)	1.13742 (13)	0.1043 (10)
H18A	-0.0386	0.5941	1.1402	0.125*
C19	0.2521 (8)	0.5704 (2)	1.17862 (14)	0.1068 (11)
H19A	0.2352	0.6175	1.2088	0.128*
C20	0.4413 (6)	0.5145 (3)	1.17591 (12)	0.1038 (10)
H20A	0.5511	0.5233	1.2046	0.125*
C21	0.4693 (5)	0.4449 (2)	1.13051 (11)	0.0803 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H21A	0.5965	0.4064	1.1284	0.096*
01	0.5432 (3)	0.30065 (15)	1.03724 (8)	0.0927 (6)
O2	0.3030 (3)	0.40496 (13)	0.97484 (7)	0.0860 (5)
03	0.1485 (3)	0.27485 (12)	1.03782 (6)	0.0761 (5)
O4	0.3361 (3)	-0.02712 (11)	0.93507 (7)	0.0760 (5)
O5	-0.2233 (3)	-0.02273 (12)	0.83326 (7)	0.0742 (5)
O6	0.0906 (3)	-0.40877 (12)	0.68330 (7)	0.0800 (5)
H6A	-0.0266	-0.4389	0.6817	0.120*
S1	0.34440 (10)	0.35395 (4)	1.02870 (2)	0.0632 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0578 (13)	0.0487 (10)	0.0637 (12)	-0.0001 (9)	0.0000 (10)	-0.0077 (9)
C2	0.0549 (14)	0.0698 (14)	0.0748 (14)	-0.0054 (11)	0.0117 (11)	-0.0147 (12)
C3	0.0559 (13)	0.0570 (12)	0.0699 (13)	-0.0089 (10)	0.0015 (10)	-0.0078 (10)
C4	0.0579 (13)	0.0434 (10)	0.0501 (10)	-0.0001 (9)	-0.0005 (9)	0.0028 (8)
C5	0.0591 (14)	0.0552 (11)	0.0589 (12)	-0.0020 (10)	0.0095 (10)	0.0012 (9)
C6	0.0547 (13)	0.0509 (11)	0.0702 (13)	-0.0073 (9)	0.0039 (10)	-0.0004 (10)
C7	0.0804 (17)	0.0491 (11)	0.0679 (13)	0.0139 (11)	-0.0152 (12)	-0.0079 (10)
C8	0.0617 (13)	0.0455 (10)	0.0474 (10)	0.0012 (9)	-0.0001 (9)	0.0054 (8)
C9	0.0606 (14)	0.0519 (11)	0.0495 (10)	0.0016 (10)	0.0025 (10)	0.0004 (9)
C10	0.0615 (13)	0.0539 (11)	0.0497 (10)	0.0026 (9)	0.0091 (9)	0.0004 (9)
C11	0.0595 (14)	0.0739 (14)	0.0784 (15)	0.0075 (11)	0.0050 (11)	-0.0190 (12)
C12	0.0702 (17)	0.0722 (15)	0.0838 (16)	0.0087 (12)	0.0178 (13)	-0.0202 (13)
C13	0.0827 (17)	0.0595 (13)	0.0502 (11)	-0.0064 (11)	0.0138 (11)	-0.0107 (10)
C14	0.0893 (17)	0.0593 (13)	0.0546 (12)	0.0023 (12)	-0.0097 (11)	-0.0062 (10)
C15	0.0755 (15)	0.0515 (11)	0.0490 (11)	0.0092 (10)	-0.0014 (10)	-0.0005 (9)
C16	0.0792 (16)	0.0512 (11)	0.0532 (11)	-0.0038 (11)	0.0051 (11)	-0.0004 (9)
C17	0.111 (2)	0.0705 (15)	0.0670 (15)	0.0240 (15)	0.0001 (14)	-0.0083 (12)
C18	0.148 (3)	0.0760 (18)	0.091 (2)	0.0253 (19)	0.025 (2)	-0.0175 (16)
C19	0.165 (4)	0.0735 (18)	0.083 (2)	-0.024 (2)	0.031 (2)	-0.0283 (16)
C20	0.126 (3)	0.113 (2)	0.0724 (18)	-0.049 (2)	0.0073 (17)	-0.0213 (17)
C21	0.0835 (19)	0.0839 (17)	0.0735 (15)	-0.0187 (14)	0.0048 (13)	-0.0070 (13)
01	0.0817 (13)	0.0918 (12)	0.1048 (14)	0.0246 (10)	0.0074 (10)	-0.0163 (10)
02	0.1241 (15)	0.0812 (11)	0.0531 (9)	-0.0028 (10)	0.0081 (9)	0.0042 (8)
03	0.0980 (13)	0.0692 (9)	0.0625 (9)	-0.0163 (9)	0.0243 (8)	-0.0227 (8)
O4	0.0939 (12)	0.0599 (9)	0.0718 (10)	0.0223 (8)	-0.0319 (9)	-0.0154 (8)
05	0.0672 (11)	0.0733 (10)	0.0809 (10)	0.0155 (8)	-0.0145 (9)	-0.0142 (8)
O6	0.0708 (11)	0.0750 (10)	0.0951 (12)	-0.0122 (8)	0.0124 (9)	-0.0362 (9)
S 1	0.0747 (4)	0.0586 (3)	0.0570 (3)	0.0038 (3)	0.0117 (3)	-0.0044 (2)

Geometric parameters (Å, °)

C1—O6	1.364 (2)	C12—H12A	0.9300
C1—C6	1.376 (3)	C13—C14	1.362 (3)
C1—C2	1.386 (3)	C13—O3	1.417 (2)
C2—C3	1.379 (3)	C14—C15	1.391 (3)
C2—H2B	0.9300	C14—H14A	0.9300

~ ~ ~ .			
C3—C4	1.382 (3)	C15—O4	1.377 (2)
С3—НЗА	0.9300	C16—C17	1.370 (3)
C4—C5	1.388 (3)	C16—C21	1.378 (3)
C4—C8	1.484 (3)	C16—S1	1.744 (2)
C5—C6	1.385 (3)	C17—C18	1.381 (3)
С5—Н5А	0.9300	С17—Н17А	0.9300
С6—Н6В	0.9300	C18—C19	1.354 (5)
С7—С8	1.333 (3)	C18—H18A	0.9300
C7—O4	1.351 (2)	C19—C20	1.374 (5)
С7—Н7А	0.9300	C19—H19A	0.9300
C8—C9	1.461 (3)	C20—C21	1.389 (4)
C9—O5	1.231 (2)	C20—H20A	0.9300
C9—C10	1.468 (3)	C21—H21A	0.9300
C10-C15	1.378 (3)	O1—S1	1.4122 (18)
C10-C11	1.401 (3)	O2—S1	1.4091 (17)
C11—C12	1.374 (3)	O3—S1	1.6027 (17)
C11—H11A	0.9300	O6—H6A	0.8200
C12—C13	1.373 (3)		
O6—C1—C6	122.86 (19)	C14—C13—C12	122.5 (2)
06-C1-C2	117 57 (19)	C14—C13—O3	1197(2)
C6-C1-C2	119 56 (19)	C12-C13-O3	117.8 (2)
C_{3} C_{2} C_{1}	119.7 (2)	C13 - C14 - C15	117.2(2)
$C_3 - C_2 - H_2B$	120.1	C13—C14—H14A	121.4
C1-C2-H2B	120.1	C15-C14-H14A	121.1
$C_{2}^{2} - C_{3}^{2} - C_{4}^{4}$	121.6 (2)	04-C15-C10	121.1
$C_2 = C_3 = H_3 \Delta$	119.2	04 - C15 - C14	121.94(10) 115.0(2)
$C_2 = C_3 = H_3 \Lambda$	119.2	C_{10} C_{15} C_{14}	113.0(2) 123.1(2)
C_{3} C_{4} C_{5}	119.2	C_{17} C_{16} C_{21}	123.1(2) 121.8(2)
$C_3 C_4 C_8$	110.03 (10)	C_{17} C_{16} S_{1}	121.0(2)
$C_{5} = C_{4} = C_{5}$	122.12 (18)	$C_{1}^{21} = C_{16}^{16} = S_{16}^{16}$	119.59(10) 118.51(10)
C_{5}	122.12(10) 120.86(10)	$C_{21} = C_{10} = S_{10}$	118.51(17)
C_{0}	110.6	$C_{10} = C_{17} = C_{18}$	118.0 (3)
C_{0}	119.0	$C_{10} = C_{17} = H_{17A}$	120.7
C_{4}	119.0	$C_{10} = C_{17} = M_{17}$	120.7
$C_1 = C_0 = C_3$	120.22 (19)	C19 - C18 - C17	120.8 (3)
С1—С0—Н6В	119.9	C19-C18-H18A	119.6
Сэ—С6—Н6В	119.9	C1/C18H18A	119.6
C8—C7—04	126.4 (2)	C18 - C19 - C20	120.2 (3)
C8—C/—H/A	116.8	С18—С19—Н19А	119.9
04—C/—H/A	116.8	С20—С19—Н19А	119.9
C7—C8—C9	118.96 (18)	C19—C20—C21	120.3 (3)
C7—C8—C4	118.55 (18)	С19—С20—Н20А	119.8
C9—C8—C4	122.39 (18)	С21—С20—Н20А	119.8
O5—C9—C8	122.18 (18)	C16—C21—C20	118.1 (3)
O5—C9—C10	122.89 (19)	C16—C21—H21A	120.9
C8—C9—C10	114.93 (18)	C20—C21—H21A	120.9
C15—C10—C11	116.89 (19)	C13—O3—S1	117.65 (13)
C15—C10—C9	120.26 (18)	C7—O4—C15	117.50 (17)
C11—C10—C9	122.8 (2)	С1—О6—Н6А	109.5
C12-C11-C10	121.2 (2)	O2—S1—O1	118.79 (12)

supplementary materials

C12—C11—H11A	119.4	O2—S1—O3	107.52 (11)
C10-C11-H11A	119.4	01—S1—O3	108.38 (11)
C13—C12—C11	119.0 (2)	O2—S1—C16	111.67 (10)
C13—C12—H12A	120.5	O1—S1—C16	109.52 (11)
C11—C12—H12A	120.5	O3—S1—C16	99.05 (9)
O6—C1—C2—C3	-179.7 (2)	O3—C13—C14—C15	176.60 (18)
C6—C1—C2—C3	0.6 (3)	C11—C10—C15—O4	-178.69 (19)
C1—C2—C3—C4	-0.4 (3)	C9-C10-C15-O4	0.1 (3)
C2—C3—C4—C5	-0.1 (3)	C11-C10-C15-C14	0.9 (3)
C2—C3—C4—C8	178.48 (19)	C9-C10-C15-C14	179.78 (19)
C3—C4—C5—C6	0.5 (3)	C13—C14—C15—O4	179.0 (2)
C8—C4—C5—C6	-178.03 (18)	C13-C14-C15-C10	-0.7 (3)
O6—C1—C6—C5	-179.87 (19)	C21—C16—C17—C18	0.2 (4)
C2—C1—C6—C5	-0.2 (3)	S1-C16-C17-C18	-176.3 (2)
C4—C5—C6—C1	-0.4 (3)	C16-C17-C18-C19	1.1 (4)
O4—C7—C8—C9	-1.5 (3)	C17—C18—C19—C20	-1.6 (5)
O4—C7—C8—C4	175.1 (2)	C18-C19-C20-C21	0.9 (5)
C3—C4—C8—C7	-48.2 (3)	C17—C16—C21—C20	-0.9 (4)
C5—C4—C8—C7	130.3 (2)	S1-C16-C21-C20	175.61 (18)
C3—C4—C8—C9	128.2 (2)	C19—C20—C21—C16	0.3 (4)
C5—C4—C8—C9	-53.2 (3)	C14—C13—O3—S1	71.8 (2)
C7—C8—C9—O5	-178.6 (2)	C12—C13—O3—S1	-110.7 (2)
C4—C8—C9—O5	5.0 (3)	C8—C7—O4—C15	0.1 (3)
C7—C8—C9—C10	2.0 (3)	C10-C15-O4-C7	0.6 (3)
C4—C8—C9—C10	-174.41 (17)	C14—C15—O4—C7	-179.11 (19)
O5-C9-C10-C15	179.2 (2)	C13—O3—S1—O2	55.51 (18)
C8—C9—C10—C15	-1.4 (3)	C13—O3—S1—O1	-74.07 (18)
O5-C9-C10-C11	-2.0 (3)	C13—O3—S1—C16	171.77 (17)
C8—C9—C10—C11	177.38 (19)	C17—C16—S1—O2	50.1 (2)
C15-C10-C11-C12	0.3 (3)	C21—C16—S1—O2	-126.49 (19)
C9—C10—C11—C12	-178.5 (2)	C17—C16—S1—O1	-176.26 (19)
C10-C11-C12-C13	-1.8 (4)	C21—C16—S1—O1	7.2 (2)
C11—C12—C13—C14	2.1 (4)	C17—C16—S1—O3	-63.0(2)
C11—C12—C13—O3	-175.4 (2)	C21—C16—S1—O3	120.47 (19)
C12—C13—C14—C15	-0.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O6—H6A····O5 ⁱ	0.82	1.91	2.716 (2)	170
C7—H7A···O1 ⁱⁱ	0.93	2.59	3.216 (5)	125
C12—H12A····O1 ⁱⁱⁱ	0.93	2.45	3.139 (5)	131
C14—H14A····O4 ⁱⁱ	0.93	2.47	3.345 (5)	156
C17—H17A····O2 ^{iv}	0.93	2.52	3.234 (5)	134
Symmetry address (i) $= 1/2 = 1/2$	(ii) $u \mid 1$ $u = 12$ (ii)	i) 1 (izz)		

Symmetry codes: (i) -x-1/2, y-1/2, -z+3/2; (ii) -x+1, -y, -z+2; (iii) x-1, y, z; (iv) -x, -y+1, -z+2.

Fig. 1

